

Attacks Due to SQL Injection & Their Prevention
Method for Web-Application

Shubham Srivastava1, Rajeev Ranjan Kumar Tripathi2
1Department of Computer science and Engineering ,TMU, Moradabad (India)

2Department of Computer science and Engineering,ITM, GIDA, Gorakhpur (India)

Abstract-The use of web application has become increasingly
popular in our daily life as reading news paper, making online
payments for shopping etc. At the same time there is an increase
in number of attacks that target them. In this paper we present
a detailed review on various types of SQL injection attacks and
prevention technique for web application. Here we are
presenting a new technique for prevention of SQL injection
attack for web application. As we know that SQL injection
attack can be easily prevented by applying more secure scheme
in login phase. To address this problem we proposed a
technique with highly secure login scheme which uses hash code
with salt.

Keywords-

SQL injection, database security, authentication, Hash- code ,
Cryptographic salt and Final hash code.

1. INTRODUCTION

The use of web application has become increasingly popular
in our daily life as reading news paper, making online
payments for shopping etc. At the same time there is an
increase in number of attacks that target them.SQL injection
attacks are possible because web application code is not
secured during application development. SQL injection is a
hacking method that is based on the security vulnerabilities
of web application.

It is categorized as one of the top-10 2010 Web application
vulnerabilities experienced by Web applications according to
OWASP (Open Web Application Security Project) [9].
One of the best ways to secure applications is by limiting
access to those authorized to access the application[14]. In
this paper we proposed a new technique to authenticate user
for limiting access. In this technique we calculate a Final
hash code value at run time and correct matching will
authenticate the user. This technique uses hash function and
salt, a salt consists of random bits creating one of the inputs
to a one way function and a hash function is a subroutine that
maps a large data set to a small data set.

1.1 Meaning & impact of SQL Injection

There are some malicious code that can be attach to the SQL
called SQL Injection. SQL Injection is one of the many web
attack mechanisms used by hackers to steal data from
organizations. It is perhaps one of the most common
application layer attack techniques used today. It is the type
of attack that takes advantage of improper coding of our web
applications that allows hacker to inject SQL commands into
say a login form to allow them to gain access to the data held
within our database.

In essence, SQL Injection arises because the fields available
for user input allow SQL statements to pass through and
query the database directly.SQL Injection is the hacking
technique which attempts to pass SQL commands

(statements) through a web application for execution by the
backend database. If not sanitized properly, web applications
may result in SQL Injection attacks that allow hackers to
view information from the database. Once an attacker realize
that a system is vulnerable to SQL injection, he is able to
inject SQL query or commands through an input form field.
An attacker may execute arbitrary SQL statements on the
vulnerable system. This may compromise the integrity of our
database and/or expose sensitive information. Depending on
the back-end database in use, SQL injection vulnerabilities
lead to varying levels of data/system access for the attacker.

2. RELATED WORK

Most of existing techniques, such as filtering, information-
flow analysis, penetration testing, and defensive coding, can
detect and prevent a subset of the vulnerabilities that lead to
SQLIAs. In this section, we list the most relevant
techniques-

William G.J.Halfond et al.’s Scheme- [2]- This approach
works by combining static analysis and runtime monitoring.
In its static part, technique uses program analysis to
automatically build a model of the legitimate queries that
could be generated by the application. In its dynamic part,
technique monitors the dynamically generated queries at
runtime and checks them for compliance with the statically-
generated model. Queries that violate the model represent
potential SQLIAs and are thus pre- vented from executing on
the database and reported.
SAFELI – [3] proposes a Static Analysis Framework in order
to detect SQL Injection Vulnerabilities. SAFELI framework
aims at identifying the SQL Injection attacks during the
compile-time. This static analysis tool has two main
advantages. Firstly, it does a White-box Static Analysis and
secondly, it uses a Hybrid-Constraint Solver. For the White-
box Static Analysis, the proposed approach considers the
byte-code and deals mainly with strings. For the Hybrid-
Constraint Solver, the method implements an efficient string
analysis tool which is able to deal with Boolean, integer and
string variables.
Thomas et al.’s Scheme - Thomas et al., in [11] suggest an
automated prepared statement generation algorithm to
remove SQL Injection Vulnerabilities. They implement their
research work using four open source projects namely: (i)
Net-trust, (ii) ITrust, (iii) WebGoat, and (iv) Roller. Based on
the experimental results, their prepared statement code was
able to successfully replace 94% of the SQLIVs in four open
source projects.

Shubham Srivastava et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3615-3618

3615

Ruse et al.’s Approach - In [12], Ruse et al. propose a
technique that uses automatic test case generation to detect
SQL Injection Vulnerabilities. The main idea behind this
framework is based on creating a specific model that deals
with SQL queries automatically. Adding to that, the approach
identifies the relationship (dependency) between sub-queries.
Based on the results, the methodology is shown to be able to
specifically identify the causal set and obtain 85% and 69%
reduction respectively while experimenting on few sample
examples.
Ali et al.’s Scheme - [14] adopts the hash value
approach to further improve the user authentication
mechanism. They use the user name and password hash
values SQLIPA (SQL Injection Protector for
Authentication) prototype was developed in order to test the
framework. The user name and password hash values are
created and calculated at runtime for the first time the
particular user account is created
Roichman and Gudes’s Scheme – [13]suggests using a fine-
grained access control to web databases. The authors develop
a new method based on fine-grained access control
mechanism. The access to the database is supervised and
monitored by the built-in database access control. This is a
solution to the vulnerability of the SQL session traceability.
Moreover, it is a framework applicable to almost all
database applications.
SQL-IDS Approach - Kemalis and Tzouramanis in [16]
suggest using a novel specification-based methodology
for the detection ofexploitations of SQLinjection
vulnerabilities. The proposed query-specific detection
allowed the system to perform focused analysis at negligible
computational overhead without producing false positives or
false negatives.
SQLrand Scheme - SQLrand approach [18] is proposed by
Boyd and Keromytis. For the implementation, they use a
proof of concept proxy server in between the Web server
(client) and SQL server; they de-randomized queries received
from the client and sent the request to the server. This de-
randomization framework has 2 main advantages: portability
and security. The proposed scheme has a good performance:
6.5 ms is the maximum latency overhead imposed on every
query.
SQLIA Prevention Using Stored Procedures - Stored
procedures are subroutines in the database which the
applications can make call to[15] . The prevention in these
stored procedures is implemented by a combination of
static analysis and runtime analysis. The static analysis used
for commands identification is achieved through stored
procedure parser and the runtime analysis by using a SQL
Checker for input identification.
Parse Tree Validation Approach - Buehrer et al. [20] adopt
the parse tree framework. They compared the parse tree of a
particular statement at runtime and its original statement.
They stopped the execution of statement unless there is a

match. This method was tested on a student Web application
using SQLGuard. Although this approach is efficient, it has
two major drawbacks: additional overheard computation and
listing of input (black or white).
Dynamic Candidate Evaluations Approach - In [10], Bisht et
al. propose CANDID. It is a Dynamic Candidate Evaluations
method for automatic prevention of SQL Injection attacks.
This framework dynamically extracts the query structures
from every SQL query location which are intended by the
developer (programmer). Hence, it solves the issue of
manually modifying the application to create the prepared
statements.

3. PROPOSED TECHNIQUE

In this paper we proposed a new technique for preventing
Database against SQL injection attack. In this approach one
extra column is required in user account table to store Final
hash value. This value is created at the time of new user
registration and stored in user account table together with
user name and password as shown in table.

Table1- User account table
 USER
NAME

PASSWORD FINAL HASH-CODE

At the time of login Final hash-code is calculated using
stored procedure at run time and authentic user is identified
by exact matching of username, password and final hash-
code. For calculation of Final hash code we will proceed
according to architecture given in next section.

3.1 ARCHITECTURE

Architecture of proposed technique is shown in figure
below-

fig.1 ‐Proposed Architecture

Shubham Srivastava et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3615-3618

3616

3.2 WORKING METHODOLOGY

The working of proposed technology can be divided into two
parts-

1-Registration of new user:- when a new user wants to
register he/she will fill the login form with a unique name
and password at user interface. At middle tier this unique
name and password is processed according to the proposed
architecture.

steps are as given below-

1. Find hash code of login name using password as
salt.

2. Find hashcode of password using login name as salt.
3. Find Final hashcode by concatenating output of

step1 and step 2
4. Store login name,Password and Finalhashcode

(output of step3) to user a/c table.
2- Login and verification:- when a user wants to logon
he/she will fill the login form .
steps are as given below-

1. Enter a unique name and password at user interface.
2. Entered user name is matched with the name stored

in user a/c table.
3. when user name matches correctly , process user

name and password according to proposed
technique to find Final hash code at run time.

4. verify this final hashcode and password with stored
values.

5. If he/she is valid user then can access database to
retrieve information from there otherwise error
message is displayed .

Working can be diagramatically shown as below-

fig.2 –Three tier proposed Architecture

4. EVALUATION OF TECHNIQUE
The performance of proposed technique has been evaluated
on a table having different number of user records. We
computed response time of the system with and without
embedded our proposed technique.

For evaluation of our proposed technique we consider a
dummy data table with varying number of records 10, 20, 30,
40, 50. Result demonstrate that our proposed method put
insignificant overhead onto the server in terms of time
required in milliseconds.
Processing overhead for different number of users is shown
into the table given below:-

 Total
Records

With embedded
proposed technique

Without embedded
proposed technique

10 11.3 10.3
20 11.8 10.8
30 12.5 11.5
40 12.8 11.8
50 13.2 12.1

Table2 – Performance analysis of proposed technique

Following graph shows the comparative study of system with
and without embedded proposed technique-

11.3
11.8

12.5
12.8

13.2

10.3
10.8

11.5
11.8

12.1

0

2

4

6

8

10

12

14

1 2 3 4 5

T
im
e
 i
n
 m
il
is
e
c
o
n
d
s-
--
>

No .o f Reco rds------>

Result Analysis

With em be dd ed pro po sed
te chn iq ue

With ou t em b ed ded pr op ose d
te chn iq ue

5.CONCLUSIONS AND FUTURE WORK

It is obvious from above description that SQL injection
attacks are one of the largest classes of security problems.
Most existing technique either require developers to
manually specify the interfaces to an application or, if
automated, are often inadequate when applied to modern,
complex web applications.

In this paper we have reviewed the most popular existing
SQL Injections related issues. We proposed a new
technique based on hash function which is simple and
highly secure from attackers. This paper presents an
authentication method for preventing SQL injection attack
and limiting access to those authorized to access the
application. The proposed scheme is efficient and overhead is
negligible. The future evaluation work should focus on
efficiency of the system.

Shubham Srivastava et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3615-3618

3617

5. ACKNOWLEDGMENT

We are feeling so glad to express our sincere thanks to our
Parents, supervisor , colleagues and all those persons who
helped us directly and indirectly to complete this paper.

6. REFERENCES
[1] Indrani Balasundaram, E.Ramaraj “An Authentication Scheme

for Preventing SQL Injection Attack Using Hybrid Encryption
PSQLIA-HBE”(ISSN 1450-216X Vol.53 No.3 (2011),pp.359-368)

[2] William G.J.Halfond and Alessandro Orso “AMNESIA:Analysis and
Monitoring for Neutralizing SQL-Injection Attacks”

[3] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao. A
StaticAnalysis Framework for Detecting SQL Injection
Vulnerabilities,COMPSAC 2007, pp.87-96, 24-27 July 2007

[4] William G.J.Halfond ,JeremyViegas, Alessandro Orso
“AClassification of SQL injection Attacks And Countermeasures”

[5] Romil Rawat , Chandrapal Singh Dangi,Jagdish Patil
 ” Safe Guard Anomalies against SQL Injection Attacks”
[6] Indrani Balasundaram, Dr.E.Ramaraj “An Approach to Detection of

SQL Injection Attacks in Database Using Web Services”(IJCSNS
,VOL. 11 No.1,January 2011

[7] Debasish Das,Utpal Sharma & D.K. Bhattacharyya “An Approach to
Detect and Prevent SQL Injection Attack Based on Dynamic Query
Matching”

[8] A. Tajpour; M. Masrom; M. Z. Heydari.; S. Ibrahim;
"SQLinjection detection and prevention tools assessment," Proc.
Of ICCSIT 2010, vol.9, no., pp.518-522, 9-11 July 2010

[9] [http://www.owasp.org/index.php/Top_10_2010-A1-Injection, retrieve
on 13/01/2010

[10] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan. CANDID:
Dynamic Candidate Evaluations for Automatic Prevention of SQL
Injection Attacks. ACM Trans. Inf. Syst. Secur., 13(2):1–39, 2010

[11] S. Thomas, L. Williams, and T. Xie, On automated prepared
statement generation to remove SQL injection vulnerabilities.
Information and Software Technology 51, 589–598 (2009).

[12] M. Ruse, T. Sarkar and S. Basu. Analysis & Detection of SQL
Injection Vulnerabilities via Automatic Test Case Generation of
Programs. 10th Annual International Symposium on Applications
and the Internet pp. 31 – 37 (2010)

[13] Roichman, A., Gudes, E.: Fine-grained Access Control to
WebDatabases. In: Proc. of 12th SACMAT Symposium, France (2007)

[14] Shaukat Ali, Azhar Rauf, Huma Javed “SQLIPA:An authentication
mechanism Against SQL Injection”

[15] K. Amirtahmasebi, S. R. Jalalinia, S. Khadem, "A survey of
SQLinjection defense mechanisms," Proc. Of ICITST 2009, vol.,
no., pp.1-8, 9-12 Nov. 2009

[16] K. Kemalis, and T. Tzouramanis (2008). SQL-IDS: A
Specification-based Approach for SQLinjection Detection. SAC’08.
Fortaleza, Ceará, Brazil, ACM: pp. 2153 2158.

[17] Shubham srivastava,”A Survey On: Attacks due to SQL injection and
their prevention method for web application” (IJCSIT) Vol. 3 (1) ,
2012, 3225-3228

[18] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL
Injection Attacks. In Proceedings of the 2nd Applied Cryptography
and Network Security Conference, pages 292–302, June 2004.

[19] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee and S.-Y.
Kuo , "Securing Web Application Code by Static Analysis and
Runtime Protection," 13th International Conference on World Wide
Web, New York, NY, 2004, pp. 40-52.

[20] G. Buehrer, B.W. Weide, P.A.G. Sivilotti, Using Parse Tree
Validation to Prevent SQL Injection Attacks, in: 5th International
Workshop on Software Engineering and Middleware, Lisbon,
Portugal, 2005, pp. 106–113.

Shubham Srivastava et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3615-3618

3618

